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Characterizations of Native Spaces

Lin-Tian Luh

Abstract. In the theory of radial basis functions, linear combinations
of the translates of a single function 4 are used as interpolants. The space
spanned by all of these linear combinations carries an inner product defined
via b itself. It can be completed and becomes a Hilbert space, called the
native space for P, which is of great importance for further investigation
of radial basis functions. The native space will contain abstract elements
which are not linear combinations of radial basis functions, and require
some work to be recognized as functions. This paper provides some char-
acterizations of native spaces and relates some of the different approaches
used to define them. Finally, embedding results for native spaces into
Sobolev spaces are proven.

§1. Introduction

Our goal is to describe properties of the set of functions

N

Z cj)(x, xj), x E f, cj E C, (1)

where Q is a subset of IRd and (D is a real-valued symmetric function on
Q x Q. These functions depend on sets X = {x 1 , ... , XNI} C QZ of N pairwise

distinct points called "centers", while the number N of centers and their
placement within fQ are arbitrary. Functions of the form (1) arise naturally as
tools for multivariate approximation, especially if I) is a radial basis function
'D(x, y) := 0(lx- Y112) with a real-valued function 0 on [0, co). We shall study
the closure of the linear span of functions (1) under a natural topology that
comes from I) itself, provided that 4D has a crucial property:

Definition 1. A function 4 E Cf x 9) is called conditionally positive definite
(abbreviated as c.p.d.) of order m on Q if the quadratic form

N

Y. Cj~k-D(Xj,Xkc)
j,k=l
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is positive for all sets X = X...., XN} C Q of N pairwise distinct points
and all vectors c = (cl, .. , CN)T E CN \ {0} satisfying

N

-cip(xi) = 0 for all p C Pd,, (2)

where Pd, is the space of d-variate complex-valued polynomials of order not
exceeding m.

There are various possibilities to proceed from here. Already in their early
pioneering papers, Madych and Nelson already took two different approaches,
via finitely supported functionals [3] and via a specific version of generalized
Fourier transforms [4] in the spirit of Gelfand-Shilov. The latter requires
measure-theoretic arguments at certain places, and is rather complicated to
deal with. The dissertation of Iske [1] used variational inequalities, while
Weinrich [6] proceeded via regularized distributions in the sense of Schwartz.
Our goal here is to show, as far as possible, the equivalence of the cited
approaches. Since the access via generalized Fourier transforms has problems
in dealing with arbitrary domains Q C Rd, we proceed as in [5] in order to
start with the most general approach known so far.

§2. Construction via Finitely Supported Functionals

Consider the space
N

(pd) {N:cibI ci E C, xi E Q for 1 < i < N with (2)}

of all functionals that are finitely supported in Q and vanish on the polynomials
in Pd,. Starting with a c.p.d. function -I) of order m in Q, we define

N M
(,A4 := E1 iL(i j

i=1 j=l

for A, ( with A =•=lix,, py = to get an inner
product (., .),, which induces a 4D-dependent norm in the (D-independent space
(P)a To relate functionals with functions, we use the map

R (d I1

.)Q - C(Q), Rn¢(A) := AxcI(x,-) A *,D,

where Ax stands for the action of A with respect to the variable x. By standard
Hilbert space arguments, the fundamental identity

t(R ()) = (A,,v)¢, for all A,, C (PE)i (3)
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proves that (Pa)Q and its image under Rp form a dual pair. Furthermore,
this equation carries over to the Hilbert space closures Pp,Q of (Pd,,)-! and
Fn of R4n ((Pd,,)i), respectively.

This construction is simple, but it leads to rather abstract elements in-
stead of classical functionals and functions. To overcome this problem, one
assumes that Pm. and Q allow a Lagrange-type basis l1,...,lm' with m' =

dimPd and points xl,...,Xm, e f, such that li(xj) = 6ij for 1 < i,j !i m'.

Then the functional 6(x) := - =1 l(x)6ý, lies in d and the map S'
with

S4(uG)(x) := (itR6()), 6(x)R4,(p) = J(Rn(8(x))) for all p E P•,5,x e fQ

uses (3) to define a classical function Sp (M) for each abstract element A E P4,,.
The space G4, 0 := Sd((Pad)n) now is a much more concrete space. The first
of our results can be found in [2] with full proofs.

Theorem 2. The spaces F4,n := R,(Pp,n) and G4,p := SD(P4,0 ) are iso-
metrically isomorphic via the mapping S4 o R- 1 and the inner product it
introduces on G),Q. Furthermore,

p(S•(A)) = (A,j4). = y(R4RX(A)) (4)

holds for all functionals in (Pmd)i! and its closure Pp,n.

It is not straightforwardly possible to associate classical function values
to the elements R&(A). But (4) indicates that R1(A) and Sp(A) should agree
up to a polynomial from pd on fQ. The function SD (A), however, vanishes on

the points we used for the Lagrange interpolation in Pm,~ and thus realizes a
very special assignment of function values modulo Pmd. Thus, we can interpret
RD(A) as an equivalence class of functions mod pd, on fQ, one representer of
which is SD (A). Thus we should add Pd, to the spaces we dealt with so far.

Definition 3. Let 4 be c.p.d. of order m > 0 in fQ. Then the direct sum
Nt(Q) := Pmd (Q) (D Gp,n

is called the native space ofP.

The above construction allows us to define a semi-inner product (., .)r on
this space such that the nullspace is Pd,. Theorem 2 now implies the isometric
isomorphisms N4(f2) • Pd,(Q) E PpQ and N4(Q) c Pd((Q) D Fp,n as two
characterizations of the native space. We add two others, with proofs in [2]
dating partially back to [3]:

Theorem 4. Assume Q is a subset of Rd and m > 0. Then NX(Q) is the
unique subspace of C(fQ) with a semi-inner product (., .)¢ satisfying

(a) the null-space of the semi-norm is Pmd (Q),

(b) N4(Q)/Pdm(Q) is a Hilbert space,

(c) if p E Pmd',± then p. * P E N4ý(f) and (y * 4), f)4, = p(f) for all fE
N4, (Q).
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Theorem 5. Fix m > 0 and a c.p.d. function P of order m in Q. Then a
complex-valued function f on Q is in NX(Q) iff there is a constant c(f) such
that

M <5 cWf1'" 1lD

for all in (Pm)'. The smallest possible constant for such f is the seminorm

If IIý.
The following sections will proceed gradually from here to other char-

acterizations of native spaces. The main guideline is the various forms that
functionals can take, starting from finitely supported functionals used in this
section. We proceed via measures (finitely or compactly supported) to distri-
butions, and we refer the reader to [2] for full proofs.

§3. Construction via Measures

Definition 6. The family of all finitely supported measures on Q is denoted
by M(P).

Theorem 7. Let m be a nonnegative integer. Assume 4 is positive definite
in Q with the following property: for all A E M(Q) and E > 0, there exists p,
in (Pd,)A satisfying

Then (Pmd)-L is contained in M(P2), and M(Q) is isometrically isomorphic to

a dense subset of(P,,)'. Furthermore, we have

N•(f•)• Pro (D) M Y(P),

where the closure is induced by (P. The inner product on M(Q) is defined as
(,pP : = A •P* )

Now we introduce a new space ((Pd,)') consisting of all compactly sup-
ported measures/I on Q with vanishing moments for Pd,, i.e., all integrals of
polynomials from Pd, with respect to ju are zero. If we assume

jin ~'(x, y)dv(y)dy_(x) = jj (x, y)dji(x)dv(y)

for all p, v in ((P)d and

v(V * ) > 0

for all nonzero v, it is easily checked that

(e P,) := w( e h th

forms an inner product on ((Pma,)J). Then we have the following theorem:
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Theorem 8. Under the above assumptions, ((Pd,)') is isometrically iso-

morphic to Fiurthermore, the native space N(,(Q) is equivalent to

p~d (Q) ((pd).

The proof of Theorem 8 in [2] is quite hard. It involves weak* topology
and the Krein-Milman theorem. So far, Theorem 8 is the best result concern-
ing interpretation of the dual of the native space as a space of measures.

§4. Construction via Tempered Test Functions

Starting from [4] there is an approach to native spaces via generalized Fourier
transforms in the sense of Gelfand and Shilov. Here, we want to avoid distribu-
tions and generalized Fourier transforms as far as possible. The key point is to
use variational equations on spaces of tempered test functions as a convenient
substitute for generalized Fourier transforms.

Let S(Q) denote the space of tempered test functions in the sense of
Laurent Schwartz with supports contained in 9, and define Sm (i) as the
space of tempered test functions with support in Q and vanishing moments
up to order m. For all v,w E $•m(Q)

(v, w),:= nf j P(x, y)v(x)w(y)dxdy

is a bilinear form, and we would like to base a second construction of the
native space on it. To this end, it would be a reasonable possibility to define a
property like "tempered conditional positive definiteness" to require that this
form is positive definite on Sj(il). The result would be a different theory,
but we want to blend this approach into our previous setting. Thus we look
at conditions that allow to relate this bilinear form to the earlier one.

Following [1], we assume a continuous positive function W : RRd\{0 R
exists such that

(v,w)q, = (27)-d ld sv(x)ý(x)zZ'(x)dx (5)

for all v, w E S,, (Q). Here

i(w) e-iXTWv(x)dx

denotes the classical Fourier transform of v. By approximation of functionals
from (Pd,)' by regular distributions generated by functions from SmJ-(Q), Iske
[1] proved that this assumption is slightly stronger than c.p.d. of 4 on Rd,
and that (v,w)4 = (v,w), holds for all v,w E ,,, (Q)
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Definition 9. If a function P of difference form 4)(x, y) = O(x - y) with
a continuous and even function 0 on Rd satisfies (5), we call (D variationally
positive definite (v.p.d) of order rm > 0 on Rd.

Definition 10. Let (P be v.p.d. of order m > 0 on Rd. A complex-valued
function f is in the space Cj,m(Q) if and only if f E C(Q) and there exists a
constant c(f) such that

i/f• f(x)v(x)dxl • c(f){jj)(x,y)v(x)v(y)dxdy} 1I for all v E C(Q).

Theorem 11. Let Q be open and 4) be v.p.d. of order m > 0 in Rd. Then

Yp (Q) •- CD,m (Q). Furthermore, Sg (Q) is isometrically isomorphic to (Pdn) .

Theorem 11 provides a nice unification of the theories of Weinrich [6] and
Iske [1]. Their work is based on (Pa)A and S,(Q), respectively. The proof of
Theorem 11 is rather involved [2].

§5. Embedding Theorems

We now construct continuous embeddings of native spaces into well-known
spaces. Madych and Nelson's discovery that NM(IRd) C C(]Rd) can be re-
garded as the first step towards embedding theorems, but it was just an in-
clusion result. In this paper, all the embedding theorems concern continuous
embeddings with respect to the topologies of the spaces. Even the embeddings
of native spaces into L2 spaces can be nontrivial, provided that the underlying
domains are unbounded (see [5] for the bounded case).

In this section we first assume (P to be v.p.d. of order 0 on Rd with a
positive classical Fourier transform W E LI(Rd) of ¢ with 4)(x, y) = ¢(x - y).
All functions f of the form (1) have a classical Fourier transform

N

f (w) = p(w) cjeW X3
j=l

and there is an isometry B : Rp((Pd)') --+ L2 (Rd), f - If/V/5 mapping

these functions into L2 (Rd). It is now easy to see that the equation f =
V/." B(f) holds for all functions in R.((Pod)A) and its closure FD,q which can
be identified with the native space of 4).

Theorem 12. For variationally positive definite functions on Rd of order
zero with a positive L 1 Fourier transform p, the functions in the native space
of 4) have Fourier transforms of the form I/-" g with an L2 function g. The

native space for 4) can be continuously embedded [2] into L 2 (Rd).

The last statement was generalized in [2] to
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Theorem 13. Let 4 be symmetric and translation-invariant on Qx Q and
c.p.d. of order m > 0 on a domain Q C R•d containing points 6I,... ,N

which uniquely determine polynomials of Pd (Q). If there exists a positive
continuous g E L( 1(Q) which decays exponentially at infinity and satisfies

J Ip(x)O(x)lg(x)dx < oo

for all p(x) E Pdr(Q), then F4,, can be continuously embedded in L 2 (Q).

Theorem 12 characterizes native spaces as spaces of functions whose
Fourier transforms lie in a weighted L2 space. The same holds for Sobolev
spaces on Rda, and this similarity can be used to derive theorems for embed-
ding of native spaces into global Sobolev spaces on IRd. For embeddings of
local native spaces on domains Q C ]Rd, we refer the reader to the fact (proven
in [2] and [5]) that functions in native spaces always have an extension to the
largest domain where I) has the c.p.d. property. This yields embeddings of
local native spaces into spaces of restrictions of global Sobolev spaces for glob-
ally defined functions I), but the case of purely locally defined 'D is unsolved.

If 1 is v.p.d.of positive order m on Rd, the function W of (5) will have a
singularity at zero, and thus the notion of Fourier transforms needs generaliza-
tion. We simply view (5) as a variational property satisfied by the generalized
Fourier transform W of (D, and we want to prove

Theorem 14. For v.p.d. functions 1D on Rd of order m > 0 the functions f
in the native space of 4 have generalized Fourier transforms f= VW" g with
an L 2 function g, where the generalized Fourier transform of f is defined via
the variational property

J fw =(27r)-d 0 i for all wEcSL(Q).

Proof: We take two functions v, w E Sý(Q) and form the function fv :P *;v-.
Then (5) yields

inw f, = (27r)d f V

= (27r)-d J /•V• (6)

if we define B(f,) := v- E L 2(Ra). This maps isometrically into L 2(Ra),
because the canonical inner product of such functions is

(f., f,,)4, =- (27r) -d I Ov

Now (6) carries over to the closure, i.e. the native space, and it yields the
desired result. 0
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